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Optimization Schemes

Mordechay Karpel*
Technion—Israel Institute of Technology, Haifa 32000, Israel

The modal approach to integrated structural optimization of aircraft structures offers huge compu-
tational savings with acceptable loss of accuracy. The addition of the modal option to existing full-order
discrete-coordinate optimization schemes is shown in this paper to provide a very � exible design tool with
improved cost effectiveness in typical aerospace design cases. Extensive changes in the modal-based for-
mulation are introduced to expand the scope of its applicability, particularly in the static disciplines.
Fictitious masses are used to account for local effects caused by concentrated loads. High-order modal
perturbations are introduced for improved accuracy with large move limits. An optional hybrid approach
allows the use of modal aeroelastic trim with subsequent discrete-coordinate stress /strain analysis. The
new formulation includes the necessary sensitivity analysis for an adequate application in conjunction
with the modeling tools of the discrete approach. Tradeoff studies with a realistic generic � ghter aircraft
model demonstrate the new capabilities.

Nomenclature
[A] = generalized aerodynamic force coef� cient

matrix
[FM] = matrix of � ctitious masses, Eq. (3)
[K ] = stiffness matrix
[LHS ] = left-side matrix in trim, Eq. (12)
[M ] = mass matrix
ndv = number of design variables
nh = number of modal coordinates
nr = number of rigid-body modes
{P} = vector of external net loads
[P1], [P2], [P3] = aerodynamic load matrices, Eq. (13)
q = dynamic pressure
[RHS ] = right-side matrix in trim, Eq. (12)
[SU ] = stress coef� cient matrix, Eq. (16)
{u} = discrete displacement vector
{u}0 = baseline displacements under modi� ed

loads, Eq. (19)
v = design variable
{DP}i = de� ned in Eq. (30)
{Du} = displacements caused by stiffness changes
{d} = vector to trim variables
{dP}i = de� ned in Eq. (31)
[L] = eigenvalues of the baseline structure

˜[L] = eigenvalues obtained from � ctitious-mass
modes, Eq. (7)

{j} = generalized displacement vector
{s} = element stresses
[f] = normal modes
¯[f] = rigid-body modes, Eq. (2)
˜[f] = normal modes recovered from � ctitious-

mass modes, Eq. (6)
[C0] = de� ned in Eq. (20)
[c] = eigenvector matrix in generalized

coordinates, Eq. (7)
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Subscripts
a = analysis (a-set) coordinates; see Appendix
b = baseline structure
e = elastic modal coordinates
f = free ( f-set) coordinates
g = global (g-set) coordinates
h = modal coordinates
i, j = indices of design variables
l = left (l-set) coordinates after removing r-set

ones
MD = mode-displacement method
r = rigid-body reference (r-set) coordinates
SOF = summation of force method
d = trim variables

Superscripts
(k) = approximation order
1 = with � ctitious masses

Introduction

S EVERAL structural design optimization schemes that can
deal with large-order � nite element (FE) models under var-

ious types of design constraints were developed in recent
years. An example is the Automated Structural Optimization
System (ASTROS)1 that was developed to provide a multidis-
ciplinary analysis and design capability for aerospace struc-
tures. The considered disciplines include static response under
� xed loads, static aeroelasticity, dynamic response, � utter, and
some features of the interaction with control systems. Other
� nite element analysis and optimization schemes that deal with
these disciplines were presented by Haftka,2 Climent and John-
son,3 and Bindolino et al.4

The dynamic response and stability analyses are treated in
these schemes by the modal approach, but the static aeroelastic
and stress disciplines are treated by the full-order discrete ap-
proach. Each iteration starts with the reconstruction of full-
order stiffness and mass matrices, followed by a new normal-
mode analysis for the dynamic disciplines and new cost
function, constraints, and sensitivity calculations. A con-
strained-function minimization scheme, such as MICRO-
DOT,5 is then used to progress toward an optimum within pre-
scribed move limits. The task of multidisciplinary optimization
for a realistic aircraft design may require computer runs of
large CPU time (several hours with current workstations). The
resulting turnaround time puts severe limits on the number of
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design trials and trade studies that can be performed in an
actual design process.

The desire for more ef� cient procedures for the optimal de-
sign of complex structures motivated the development of re-
duced-size methods. Livne et al.6 used the equivalent-plate ap-
proach of Giles,7 which grossly reduces the number of
structural degrees of freedom but is not as general as the � nite
element approach, and it requires separate modeling efforts.
Karpel and Sheena8 used the modal approach, where calcula-
tions of all the response and stability parameters and their sen-
sitivity to changes in the design variables are based on a set
of low-frequency vibration modes of a baseline structure. The
modal approach is particularly attractive in multidisciplinary
cases where the excitation loads are affected by the structural
response, such as in aeroelastic and control augmented sys-
tems. The static part of Ref. 8 included aeroelastic effective-
ness only, based on the modal scheme of Karpel.9 It was later
extended to deal with static stress constraints by using a mo-
dal-perturbation scheme.10

The optimization schemes of Refs. 8­ 10 were based on a
modal database that was generated for the baseline structure
by common � nite element codes such as NASTRAN. The mo-
dal optimization scheme was then employed in a separate code
that performed a major optimization cycle, including updating
the generalized matrices, repeated analyses, sensitivity com-
putations, and design steps, with the database modal infor-
mation only. The � nal design variables were then used to mod-
ify the FE model for a � nal analysis or for a new optimization
cycle.

The � rst implementation of the modal approach as an option
in a discrete-coordinate optimization code with static aeroelas-
tic and stress constraints is reported in Ref. 11. This imple-
mentation was performed with the ASTROS code.12 It involved
some formulation changes for compatibility with the ASTROS
methodology and modeling options but the basic modal anal-
ysis and sensitivity formulation was similar to that of Ref. 10.
A numerical example of a generic � ghter aircraft with about a
4000 degree-of-freedom FE model demonstrated the perfor-
mance of the modal approach, with 40 lowest-frequency nor-
mal modes of the free­ free aircraft taken into account, in com-
parison with the regular discrete approach. Optimization runs
were performed with wing-skin changes of up to 30%. The
most signi� cant effect of the modal approach was in the aero-
elastic trim part (which was the most time-consuming part of
the regular runs), with speed-up factors of about 80, and error
levels of less than 1%. The speed-up factors in the subsequent
stress part were about 4, with stress errors up to 10%.

The implementation of the discrete and modal approaches
in one code calls for further developments in two aspects: 1)
combining parts of the two formulations for more cost-effec-
tive and � exible algorithms, and 2) expanding the scope of the
modal approach to facilitate seamless integration that supports
all of the modeling options. The purpose of this paper is to
present new developments in static analysis that support and
improve the modal-based enhancement of integrated optimi-
zation schemes and their implementation in ASTROS.

Modal Coordinates and Matrices
The ASTROS12 de� nition of discrete coordinate sets (which

are identical to those of NASTRAN) and the associated FE
stiffness and mass matrices are discussed in detail in Ref. 12
and are brie� y given in the Appendix. The modal coordinates
are based on an eigensolution of the structural analysis (a set)
matrices [Kaa] and [Maa] of the baseline structure. The resulting
set of normal modes satisfy the eigenvalue problem

[K ][f ] = [M ][f ][l] (1)aa a aa a

where [l] is a diagonal matrix of the corresponding eigenval-
ues, where the � rst nr rigid-body values are zero.

The basic assumption of the modal approach in structural
optimization is that the displacements (static or dynamic) of
the modi� ed structure in response to external excitation can be
adequately expressed as a linear combination of the baseline
modes

¯{u } = [f ]{j } 1 [f ]{j } (2)a ar r ae e

where {jr} and {je} are vectors of the generalized displace-
ments, [fae] is the matrix of ne low-frequency elastic modes
taken into account, and is the matrix of nr rigid-body¯[f ]ar

modes de� ned by imposing sequential unit displacements at
the rigid-body reference displacements {ur} (which is a subset
of {ua}). The orthogonal rigid-body modes in [fa] of Eq. (1)
are replaced by because the latter are not affected by the¯[f ]ar

mass distribution.
The modi� ed modal approach allows the use of relatively

large � ctitious-mass (FM) elements that cause local deforma-
tions, around the points of their application, in the modal co-
ordinates. A general presentation of the use of � ctitious-mass
elements in structural dynamics is given in Ref. 13. An appli-
cation to cases of concentrated loads is given in Ref. 14. The
modi� ed modal approach � rst calculates a set of low-fre-
quency normal modes with the nominal mass matrix [Maa] re-
placed by

1[M ] = [M ] 1 [FM ] (3)aa aa aa

where [FMaa] is a zero matrix except for � ctitious mass terms
at a small number of selected points, where relatively large
concentrated loads are anticipated. The resulting set of nh low-
frequency normal modes and the associated eigenvalues1[f ]a
[l1] yield the associated diagonal generalized mass and stiff-
ness matrices of the FM-modi� ed structure

1 1 T 1 1[M ] = [f ] [M ][f ] (4)hh a aa a

1 1 T 1 1 1[K ] = [f ] [K ][f ] = [M ][l ] (5)hh a aa a hh

The basic assumption of the � ctitious-mass approach is that
the actual displacement vector {ua} is a linear combination of
the � ctitious-mass modes . To allow a convenient appli-1[f ]a
cation of � ctitious masses in standard � nite element codes, we
replace by another set of nh modes , which corre-1 ˜[f ] [f ]a a

sponds to the nominal [Maa], but its vectors are linear combi-
nations of , namely,1[f ]a

1˜[f ] = [f ][c] (6)a a

where [c] is an nh 3 nh square nonsingular matrix, which
means that this is a transformation that does not lose any in-
formation. The substitution of Eq. (6) in Eq. (1), premultipli-
cation by , and the use of Eqs. (3­ 5) yield the eigenvalue1 T[f ]a
problem

1 1 1 T 1 ˜[K ][c] = ([M ] 2 [f ] [FM ][f ])[c][l] (7)hh hh a aa a

which is easily solved for all of the nh eigenvalues and the˜[l]
associated square eigenvector matrix [c]. The resulting [c] is
used to calculate by Eq. (6).˜[f ]a

The low eigenvalues in and the associated modes in˜[l]
are typically almost identical to those of the nominal FE˜[f ]a

model. The highest-frequency modes re� ect local deformations
(around the degrees of freedom loaded by � ctitious masses)
and are not necessarily actual natural modes. They are re-
quested, however, to account for local deformations in subse-
quent analyses. From this point on we simply use the ne elastic
modes in in lieu of in Eq. (2) and replace the cor-˜[f ] [f ]a ae
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responding diagonal generalized mass and stiffness matrices of
the baseline structure by

T 1 1 T 1[M ] = [c] ([M ] 2 [f ] [FM ][f ])[c] (8)ee b hh a aa a

˜[K ] = [M ] [l] (9)ee b ee b

Except for the local deformations in some modal coordinates
the effect of the � ctitious masses has been removed, and we
return to the regular modal-based process with the basic as-
sumption of Eq. (2).

The rigid-body mass matrix with respect to {ur} and the
mass coupling matrix are

Mrr T¯ ¯= [f f ] [M ] [f ] (10)ar ae aa b arF GMer b

where [Mer]b = 0 and [Mrr] is a full matrix. When we use the
baseline modes as generalized coordinates of a modi� ed struc-
ture, [Kee] and [Mee] become full matrices as well, and [Mer]
becomes nonzero. The generalized matrix updates are based
on the sensitivity matrices ­[Kee]/­vi, ­[Mrr]/­vi, and ­[Mer]/­vi.
These sensitivity matrices are calculated by pre- and postmul-
tiplication of the discrete g-set matrices in the Appendix by
the baseline modes and are stored in the database before the
design process starts.

Aeroelastic Equilibrium Equations
The use of modal coordinates in the construction and solu-

tion of the generalized static and static­ aeroelastic equilibrium
equations is presented in detail in Ref. 11. The most general
case is static aeroelastic equilibrium for a free structure

2q A 2q A M j q Arr re rr r rd

2q A K 2 q A M j = qA {d} (11)er ee ee er e edF G H J F G
T ¨M M 0 j 0rr er r

where {d} includes trim variables such as angle of attack and
control-surface de� ection. The elimination of {jr] and {je}
yields the aeroelastic trim equation

¨[LHS ]{j } = [RHS ]{d} (12)r

All of the parameters in and {d} are de� ned by the user,¨{j }r
except for nr variables that are solved for by Eq. (12). Equation
(11) is then solved for {jr} and {je}. These aeroelastic solu-
tions can be performed for either prescribed aircraft maneuvers
or for aeroelastic effectiveness constraints. Analytical expres-
sions for the derivatives of equilibrium variables and the ef-
fectiveness parameters, with respect to the design variables vi,
are given in Ref. 11.

The data needed for trim and effectiveness analysis along
an optimization path include only the generalized structural
and aerodynamic matrices of Eq. (11) and the derivatives of
the generalized structural matrices with respect to vi. This is a
relatively small amount of data that can be easily exported for
use by a separate code. Reference 8 used these data for struc-
tural optimization with aeroelastic effectiveness constraints
only. The optimization scheme of Ref. 9 used these data for
optimization with aeroelastic effectiveness, � utter, and control-
margin constraints. Major design optimization studies were
carried out in these applications by extremely ef� cient runs
(typically less than 30 s per design iteration on a MicroVax
workstation). The end results were then used to update the full
FE models for a � nal veri� cation.

Loads and Stress by the Hybrid Approach
The application of stress constraints requires the recovery of

the full g-set displacement vector {ug} after the trim equations
are solved and then the application of stress-displacement re-

lationships. Reference 10 showed that displacements obtained
by the basic assumption in Eq. (2) may be adequate for stress
evaluation only with the baseline structure. Stress analysis of
the modi� ed structure, while using the baseline modes as gen-
eralized coordinates, required modal perturbation matrices that
contain local deformations caused by unit changes in the de-
sign variables. On the other hand, Refs. 10 and 14 showed that
the modal aeroelastic solution can still be adequate for calcu-
lating the external net loads on the trimmed aircraft throughout
the optimization process by

¯ ¨{P } = [P ]{d} 1 [P ]{j } 1 [P ]{j } 2 [M ][f ]{j }a 1 2 r 3 e aa ar r

(13)

where the inertia relief term does not actually require the up-
date of [Maa]. Instead, it can be based on the components of
[Mgg] using the recovery/reduction process described in the
Appendix, starting with {üa} = . The modal-approach¯ ¨[f ]{j }ar r

stress analyses in the following sections use this process for
all the mass- and stiffness-dependent load vectors.

The derivatives of the variable vectors in the right side of
Eq. (13) can be used to calculate the load sensitivity ­{Pa}/
­vi, taking into account that the only coef� cient matrix in Eq.
(13) that varied with the design variables is [Maa].

The most accurate way to perform stress analysis at this
point is by returning to the full FE model with the loads of
Eq. (13), as done for example by Huang et al.15 Because the
stiffness matrix [Kaa] is singular the model is supported by
eliminating the terms associated with {ur}, and the displace-
ments are calculated by

21 ¯{u } = [K ] {P } 1 [f ]{u } (14)l ll l lr r

where {ur} is calculated by the respective row partition of
Eq. (2)

{u } = {j } 1 [f ]{j } (15)r r re e

The displacements of Eqs. (14) and (15) are merged for
{ua} and then expanded to obtain the global (g-set) displace-
ment vector {ug} by the regular discrete-coordinate recovery
process.12 Element stresses are calculated by

{s} = [SU ]{u } (16)g

where [SU ] is a � xed matrix.
The differentiation of Eqs. (14) and (15) yields the displace-

ment sensitivity

­{u } ­{P } ­[K ] ­{u }l l ll r2 1 ¯= [K ] 2 {u } 1 [f ] (17)ll l lrS D­v ­v ­v ­vi i i i

where

­{u } ­{j } ­{j }r r e
= 1 [f ] (18)re

­v ­v ­vi i i

Stress sensitivities are based on the derivatives of {ug} that
are recovered from ­{ul}/­vi.

The hybrid approach is easy to implement when the modal
and discrete schemes are integrated in one code. It might still
be very inef� cient, however, with large models.

Modal Stress Approximations
The numerical advantages of performing modal-based de-

sign optimization without returning to the full FE model mo-
tivated the development of a modal-based stress-analysis
method.10 The basic idea was that even though displacements
calculated by Eq. (2) cannot be used for stresses of the mod-
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i� ed structure, they can still be used for stresses of the baseline
structure and for a zero-order guess of the internal loads ap-
plied by the added material. The displacement vector for stress
analysis is composed by

¯{u } = {u } 1 {Du} 1 [f ]{u } (19)l l 0 lr r

where {ul}0 is the elastic displacement of the baseline structure
under the modi� ed net loads, relative to {ur}, {Du} re� ects
the change of the displacements caused by stiffness changes,
and the last term is the same rigid-body shift (which does not
affect stresses) as in Eq. (14).

New expressions for the � rst two right-side terms of Eq.
(19) and their derivatives with respect to the design variables
are given next. The new options allow greater � exibility and
higher accuracy when the modal approach is integrated with a
discrete scheme. Following the calculation of {ul} we can re-
cover {ug} and calculate stresses by Eq. (16).

Baseline Structure Under Modi� ed Loads

The � rst term of Eq. (19) is based in Ref. 10 on the mode-
displacement (MD) approach, which yields

¯{u } = ([f ] 2 [f ][f ])[C ]{j } (20)l 0 le lr re 0 eMD

where

ndv
­[K ]ee21[C ] = [I ] 1 [K ] (v 2 v )0 ee b i bFO Gi ­vii=1

The differentiation of Eq. (20) gives

­{u } ­{j } ­[K ]l 0 e eeMD 2 1¯= ([f ] 2 [f ][f ]) [C ] 1 [K ]le lr re 0 ee bS D­v ­v ­vi i i

(21)

The main advantage of the MD displacements and their de-
rivatives is that their computation is very ef� cient and does
not require the explicit computation of the external loads of
Eq. (13). A somewhat less ef� cient but more accurate way to
calculate {ul}0 is by extracting these loads and then applying
them to the baseline stiffness matrix [Kll]b. This summation-
of-force (SOF) way is particularly feasible when the modal
and discrete codes are integrated, mainly because [Kll]b is avail-
able in core and has already been decomposed when the modes
were calculated. The SOF expression for {ul}0 is simply

2 1{u } = [K ] {P } (22)l 0 ll b lSOF

and its sensitivity is

­{u } ­{P }l 0 lSOF 21= [K ] (23)ll b
­v ­vi i

First-Order Displacement Increment

The second term in Eq. (19), {Du}, is an approximation of
the displacement changes as a result of forces applied by the
added material on the baseline structure. The basic modal as-
sumption of Eq. (2) provides a good initial guess for the total
elastic deformations

(0){u } = [f ]{j } (24)l le e

which is recovered to the g set and used to calculate the � rst-
order approximation of {Du} by

ndv

(1) 21{Du } = [K ] (v 2 v )[f ] {j } (25)ll b i b Fl i eFO Gi
i=1

where [fFl]i is the l-set reduction of

­[K ]gg
[f ] = 2 [f ] (26)Fg i ge

­vi

The differentiation of Eq. (25), considering Eqs. (24) and
(26), gives

ndv(1)­{Du } ­{j }e2 1= [K ] [f ] {j } 1 (v 2 v )[f ]ll b Fl i e j b Fl jS FO G Dj­v ­vi ij=1

(27)

Equation (19), with {ul}0 of either Eq. (20) or (22),
of Eq. (26), and {ur} of Eq. (15) gives the � rst-order(1){Du }

approximation of {ul}. Its sensitivities to the design variables
are calculated by the respective derivatives in Eqs. (21) or (23),
(27), and (18). The � rst use of modal stresses in structural
optimization10 was in a separate code that received modal data
from NASTRAN. The MD approach was taken for {ul}0, and

and its derivatives were calculated with the products(1){Du }
calculated in advance by NASTRAN and saved in21[K ] [f ]ll b Fl i

the database as modal perturbations (one for each design var-
iable). In this way, there was no need to export the large dis-
crete-coordinate stiffness matrices to the optimization code. A
later application of the modal approach in ASTROS11 still fol-
lowed a similar formulation.

High-Order Approximations

Starting with k = 1, a kth-order approximation can be(k){u }l

used for calculating a higher-order version of Eq. (19)

(k11) (k1 1) ¯{u } = {u } 1 {Du } 1 [f ]{u } (28)l l 0 lr r

where is calculated by(k1 1){Du }

ndv

(k1 1) 2 1 (k){Du } = [K ] (v 2 v ){DP } (29)ll b i b l iSO Di
i=1

where is the l-set reduction of(k){DP }l i

­[K ]gg(k) (k){DP } = 2 {u } (30)g i g
­vi

The differentiation of Eq. (29) yields the high-order sensi-
tivities

(k11)­{Du }
21 (k) (k)= [K ] ({DP } 1 {dP } ) (31)ll b l i l i

­vi

where is the l-set reduction of(k){dP }l i

n (k)dv ­[K ] ­{u }gg g(k){dP } = 2 (v 2 v )g i j bSO Dj ­v ­vj ij=1

Numerical Examples
The numerical examples are based on a generic advanced

� ghter aluminum (AFA) ASTROS model whose aerodynamic
model is shown in Fig. 1. The structural model consists of
1276 grid points and 4449 elements and has 3761 free degrees
of freedom with symmetric boundary conditions. A top view
of the wing structural model is shown in Fig. 2.

The � rst case is static response of the free aircraft to a con-
centrated vertical force of 10,000 lb applied to the wing at
point (X = 352.5, Y = 117.0) (Fig. 2). The modal solutions
were obtained with two rigid-body modes (heave and pitch)
and 41 elastic symmetric modes. Equation (11) is applied in
this case with no aerodynamics and with the right side replaced
by the generalized forces caused by the external force. The
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Fig. 1 AFA uni� ed subsonic and supersonic aerodynamic model.

Fig. 2 AFA wing structural model.

Table 1 Skin thickness in initial
and � nal designs

Skin thickness, in.

Initial 1 Initial 2 Optimal

Zone
1U 0.80 0.95 0.667
1L 0.80 1.00 0.660
2U 0.80 0.80 0.709
2L 0.80 0.80 0.584
3U 0.70 0.70 0.523
3L 0.50 0.60 0.408
4U 0.45 0.45 0.395
4L 0.50 0.65 0.409
5U 0.40 0.45 0.343
5L 0.30 0.45 0.239
6U 0.03 0.10 0.021
6L 0.13 0.15 0.095
7U 0.45 0.45 0.409
7L 0.60 0.60 0.479
8U 0.25 0.25 0.210
8L 0.20 0.20 0.163
9U 0.02 0.08 0.018
9L 0.05 0.07 0.029
10U 0.20 0.20 0.170
10L 0.20 0.20 0.175
11U 0.02 0.06 0.017
11L 0.02 0.06 0.015
12U 0.10 0.25 0.081
12L 0.10 0.22 0.073
13U 0.10 0.15 0.084
13L 0.15 0.17 0.111

Weight, lb 582.8 678.5 481.3

Note: U, upper; L, lower.

Fig. 3 Stresses because of concentrated excitation.

structural response includes the effects of the distributed in-
ertia-relief forces. The resulting von Mises stresses along an
upper-skin row of elements (the gray area in Fig. 2) and shear
stresses along the spar that passes through the force point are
shown in Fig. 3. Three solutions are compared: 1) a discrete-
coordinate solution, 2) a regular modal solution with no � cti-
tious masses, and 3) a modal solution with one � ctitious mass
of 1000 lb added to the force point. It is obvious that the modal
results without the � ctitious mass are unacceptable, particu-
larly near the force point. The � ctitious-mass results, on the
other hand, are practically identical to those of the discrete
solution.

For structural optimization the wing box is divided into 13
zones, as shown in Fig. 2. The thickness values in each zone
are multiplied in the optimization process by one factor for the
upper skin and one for the lower skin elements, for a total of
26 global design variables. The inner structure of the wing as
well as the structure of the rest of the aircraft are not subjected
to changes. The aeroelastic database was constructed with the
same set of modes as described earlier for the case of no � c-
titious masses (as regular maneuver loads are well distributed).
The optimization is performed for minimum weight of the
wing-box skin, with stress constraints generated by a single
case of a symmetric 9-g pull-up maneuver at Mach 0.95. The
von Mises stresses of the skin elements are constrained to less
than the limit of 36,700 psi.

Optimization studies were performed for two different initial
skin thickness distributions. Reference runs were � rst obtained
with the standard discrete-coordinate ASTROS code, version
11.0. The skin thickness distributions and the wing-box skin

weight of the two initial wings are compared in Table 1 to
those of the optimized structure.

The total wing-box skin weight reduction was 18% in the
� rst case and 30% in the second one. The discrete optimization
runs were completed by ASTROS in two design iterations in
the � rst case and three in the second one. In more typical
design studies, when there are more disciplines and design
cases, the number of iterations is usually much larger. With
our simple optimization cases, however, we gain more insight.
The variation of the total wing-box skin weight along the op-
timization path with the � rst initial design for discrete and
modal optimization cases is given in Fig. 4. Three modal-based
approach options are shown: 1) The hybrid approach that re-
sorts to discrete formulation once aeroelastic loads are de� ned,
2) the MD approach that starts with Eq. (20), and 3) the SOF
approach that starts with Eq. (22). The weight variations of
the MD and SOF approaches are given for � rst- and second-
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Fig. 4 Weight of the designed skin along the optimization path,
� rst initial design.

Fig. 5 Percentage stress errors after � rst design step, � rst initial
design.

Fig. 6 Percentage stress errors after � rst design step, second in-
itial design.

Fig. 7 Root-mean-square percentage stress errors with different
update schemes.

order displacement approximations. The hybrid optimization
path in Fig. 4 is practically identical to the discrete path. The
� nal weight error of the MD modal approach is 23.1%, com-
pared to the discrete case, for the � rst-order case, and 21.2%
for the second-order case. The errors of the SOF cases are
signi� cantly smaller, 21.1 and 0.1%. The optimization paths
for the second initial design were similar to those of the � rst
one, but the � nal weight errors were about 2.5 times larger.

To examine the accuracy of the different modal approaches
when the structure changes, the element stresses after the � rst
design change of the discrete optimization process were com-
pared to those calculated by the different modal approaches
for these design variables. All of the modal calculations here
were based on the data of the � rst initial structure in Table 1.
The modal-based von Mises stress errors along the lower skin
elements marked in Fig. 2, in terms of percentage fraction of
the limit stress, are shown in Fig. 5. The errors of the MD
approach in the baseline design is also shown (the dotted line).
As expected, the largest errors are for the MD � rst-order case
that generally tends to underestimate the stresses and, hence,
leads to a nonconservative design (see Fig. 4). When the ap-
proximation order increases the MD approach converges rap-
idly to the baseline MD errors. The SOF errors are generally
smaller and converge to the errors of the hybrid approach,
which are practically zero. The changes indicated at the top of

Fig. 5 are those of the design variables associated with the
lower skin of zones 2, 5, and 8, relative to the � rst initial
design in Table 1.

The stress cases of Fig. 5 were also evaluated for the second
initial design of Table 1 and are shown in Fig. 6. This time
the design change in the middle section (250% at zone 5) is
much larger than in the other zones. The general tendency of
the stress errors is similar to that of Fig. 5. However, it should
be noticed that the stress errors of the � rst-order modal solu-
tions are unacceptably large, and that the SOF errors are not
smaller at this zone than the MD ones, even for third-order
approximation. Both methods do not handle such large local
design changes very well.

Percentage rms stress errors over the entire wing-box skin
are shown in Fig. 7 for the various modal formulations. Errors
are given in each case for the � rst baseline design and for the
� rst set of the discrete-process design changes, as calculated
by the modal methods with the data of the � rst and second
initial designs (weight changes of 218 and 230%, respec-
tively). It is clear that the errors of the hybrid approach are
negligible. The baseline cases are not affected by the approx-
imation order, with the SOF baseline stresses being identical
to the hybrid ones (because SOF formulation is identical to
the hybrid one for a baseline structure). Both MD and SOF
methods converge to the respective baseline errors quite rap-
idly with the increased approximation order. The choice of an
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Fig. 8 Comparison of CPU times for various modal optimization
schemes.

adequate formulation depends on the application. If, for ex-
ample, we are satis� ed with an rms error level of 1.5% (which
is reasonable in extensive preliminary-design studies), we can
use the � rst-order MD approach for design changes of up to
25%, and higher orders for larger changes. SOF approxima-
tions will give higher accuracy, but not much higher when the
design changes are relatively large (about 50%).

The choice of the adequate method depends, of course, also
on its relative numerical ef� ciency. The computations in this
work were performed on an SGI Indigo2 workstation with an
R4400 processor. A detailed breakdown of the CPU time for
an MD � rst-order case performed with the same model of this
paper, in comparison with the discrete-coordinate optimization,
is given in Ref. 11. A comparison between the CPU time con-
sumed by the different model update and sensitivity schemes
of this paper in the database and design phases is shown in
Fig. 8. The time for the modal database construction is mainly
for calculating the normal modes. The database time given in
Fig. 8 is with the normal-mode CPU time when using the
Lanczos method, as utilized in NASTRAN. The CPU time for
all methods is almost identical when applied to the baseline
structure. Subsequent iterations, however, are much more ef-
� cient with the MD formulation. The regular discrete approach
(not shown) does not spend any time on constructing a modal
database, but spends 393 s in each iteration. When applied with
control effectiveness constraints only, the discrete approach
took 387 s/ iteration, while the modal approach took only 5 s
/iteration after the database construction.11

Conclusions
Several modal-based reanalysis and sensitivity formulations

were implemented in the ASTROS discrete-coordinate module
for optimization with static aeroelastic and stress constraints
under static maneuver loads. The implementation facilitates a
signi� cant improvement of the code’s cost effectiveness. The
improvement is most dramatic in the static aeroelastic equilib-
rium and effectiveness part, where the modal results are prac-
tically perfect and the CPU gains per iteration are of almost
two orders of magnitude. A typical CPU time for constructing
a modal database for a given set of boundary conditions and
performing the � rst design step with stress constraints was
about 45% of a single discrete-coordinate step. The CPU time
for subsequent iterations was between 4%, for the � rst-order
mode-displacement approach, and 22% for the hybrid ap-
proach that returns to the discrete procedure after the aeroe-
lastic trim equations are solved. Regular aircraft maneuver
cases can be applied with about 40 elastic modes of the entire
aircraft. Extreme concentrated loads can be adequately treated
by the application of � ctitious masses.

Appendix: Discrete Coordinates and Matrices
Common � nite element codes such as NASTRAN start the

construction of the structural matrices at the individual element
level. The contribution of each element is transformed to the
global (g-set) coordinate system, which contains six coordi-
nates for each grid point, and added to the g-set stiffness and
mass matrices, [Kgg] and [Mgg], respectively. At this preface
stage, the matrices are not affected by modeling constraints,
boundary conditions, or solution methods.

To avoid repetitive construction of the g-set matrices from
scratch, the ASTROS optimization code separates the contri-
butions of the structural parts that are affected by the ndv global
design variables from those that are not affected. A global de-
sign variable is a changeable factor that multiplies the struc-
tural matrices of a user-de� ned group of � nite elements. In
each design cycle, the matrices are assembled by adding the
contributions of the changeable elements to the contribution of
the � xed elements. The stiffness matrix is assembled by

ndv ­[K ]gg
[K ] = [K ] 1 vgg gg 0 iO ­vii=1

and the mass matrix by

ndv ­[M ]gg
[M ] = [M ] 1 vgg gg 0 iO ­vii=1

where vi is the current value of the ith design variable. These
equations assume linear contributions of the design variables.
The contributions of most � nite elements in typical aerospace
models are indeed linear with respect to a representative gauge.
ASTROS also supports bar and plate elements, whose contri-
butions to the g-set stiffness matrix are proportional to a power
of vi. These elements are omitted here for clarity and simplic-
ity.

The g-set matrices are reduced to the free ( f-set) coordinates
by application of single- and multipoint constraints (SPC and
MPC). This reduction to [K ff] and [Mff] is repeated in each
discrete-coordinate design iteration. ASTROS de� nes these
constraints as boundary conditions and allows simultaneous
optimization runs with different sets of boundary conditions.

NASTRAN and ASTROS allow a further reduction of the
structural matrices by Guyan’s static condensation.11 The re-
sulting analysis (a-set) coordinates and the associated [Kaa] and
[Maa] are used for normal-modes and static equilibrium anal-
yses, after which the response at the omitted (o-set) coordi-
nates can be recovered. The transformation matrices are func-
tions of the stiffness properties and should be recalculated in
each design iteration. Static condensation is not very effective
when modern numerical solution methods, such as the Lanczos
method for eigensolutions, are used. The condensation can still
be effective, however, when large structural components are
kept unchanged in a design study. If all of the interface co-
ordinates with other parts remain in the a-set, the submatri-
ces associated with the unchanged components are constant
throughout the design process.

A further reduction is required when the structure has nr

rigid-body degrees of freedom. User-selected nr a-set coordi-
nates are used to represent the rigid-body (r-set) motion,
whereas the leftover (l-set) coordinates de� ne the relative elas-
tic deformations. While [Kaa] is a singular matrix (when nr >
0), [Kll] is not and, hence, can be inverted.

The transformation matrices between the coordinate sets are
saved in the database at the initial analysis phase for subse-
quent recovery of the displacements from the lowest l-set level
to the highest g-set level and for reduction of g-set loading
vectors to lower sets. The modal approach, which does not
update the discrete-coordinate stiffness and mass matrices in
each design step, uses a recovery/reduction process to calcu-
late stiffness or mass-dependent loading vectors. To calculate



444 KARPEL

the inertia loads {Pa} = [Maa]{üa}, for example, {üa} is � rst
expanded to the g-set {üg}, multiplied by the components of
[Mgg] given earlier, summed according to the current values of
the design variables, and then reduced to the a-set level.
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